潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似。潜水钟在水下时其内部上方空间里存有空气,以满足潜水员水下避险的需要。为计算方便,将潜水钟简化为截面积为S、高度为h、开口向下的圆筒;工作母船将潜水钟由水面上方开口向下吊放至深度为H的水下,如图所示。已知水的密度为ρ,重力加速度大小为g,大气压强为p0,Hh,忽略温度的变化和水密度随深度的变化。
(1)求进入圆筒内水的高度l;
(2)保持H不变,压入空气使筒内水全部排出,求压入的空气在其压强为p0时的体积。
(1);(2)
【详解】(1)设潜水钟在水面上方时和放入水下后筒内气体的体积分别为V0和V1,放入水下后筒内气体的压强为p1,由玻意耳定律和题给条件有
p1V1= p0V0 ①
V0=hS ②
V1=(h–l)S ③
p1= p0+ ρg(H–l) ④
联立以上各式并考虑到Hh,h >l,解得
⑤
(2)设水全部排出后筒内气体的压强为p2;此时筒内气体的体积为V0,这些气体在其压强为p0时的体积为V3,由玻意耳定律有
p2V0= p0V3 ⑥
其中
p2= p0+ ρgH ⑦
设需压入筒内的气体体积为V,依题意
V = V3–V0 ⑧
联立②⑥⑦⑧式得
⑨
玻意耳定律:
1.概念:一定质量的某种气体,在温度不变的条件下其压强与体积变化时的关系,叫做气体的等温变化
2.规律:一定质量的气体,在温度不变的情况下,它的压强跟体积成反比—— 玻意耳定律3.公式:
4.图像:
图线为双曲线,同一气体的两条等温线比较,双曲线顶点离坐标原点远的温度高,即图线为过原点的直线,同一气体比较,斜率(大的温度高,即。
5.条件:m一定,p不太大,T不太低
6.微观解释:一定质量的理想气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气体的体积减小到原来的几分之一,气体的密度就增大到原来的几倍,因此压强就增大到原来的几倍,反之亦然,所以气体的压强与体积成反比。
液柱移动问题的求解方法:
液柱移动问题的分析方法
(1)假设推理法:根据题设条件,假设发生某种特殊的物理现象或物理过程,运用相应的物理规律及有关知识进行严谨的推理,得出正确的答案。巧用假设推理法可以化繁为简,化难为易,简捷解题。
(2)温度不变情况下的液柱移动问题的特点是:在保持温度不变的情况下改变其他题设条件,从而引起封闭气体液柱的移动,或液面的升降,或气体体积的增减。解决这类问题通常假设液柱不移动,或液面不升降,或气体体积不变,然后从假设出发,运用玻意耳定律等有关知识进行推论,求得正确答案。
(3)用液柱或活塞隔开两部分气体,当气体温度变化时,液柱或活塞是否移动?如何移动? 此类问题的特点是:气体的状态参量p、V、T都发生了变化,直接判断液柱或活塞的移动方向比较困难,通常先进行气体状态的假设,然后应用查理定律可以简单地求解:其一般思路为:
①先假设液柱或活塞不发生移动,两部分气体均做等容变化:
②对两部分气体分别应用查理定律的分比形式,求出每部分气体压强的变化量△p,并加以比较。
a.如果液柱两端的横截面积相等,且△p均大于零,意味着两部分气体的压强均增大,则液柱向△p值较小的一方移动;若△p均小于零,意味着两部分气体的压强均减小,则液柱向压强减小量较大的一方(即|△p|较大的一方)移动;若△p相等,则液柱不移动。
b.如果液柱两端的横截面积不相等,则应考虑液柱两端的受力变化(△pS)。,若△p均大于零,则液往向△pS较小的一方移动;若△p均小于零,则液桂向|△pS|值较大的一方移动;若△p等于零,则液柱不移动。
登录并加入会员可无限制查看知识点解析