密立根油滴实验装置如图所示,两块水平放置的金属板分别与电源的正负极相接,板间产生匀强电场。用一个喷雾器把密度相同的许多油滴从上板中间的小孔喷入电场,油滴从喷口喷出时由于摩擦而带电。金属板间电势差为 U 时,电荷量为 q 、半径为 r 的球状油滴在板间保持静止。若仅将金属板间电势差调整为 2 U ,则在板间能保持静止的球状油滴所带电荷量和半径可以为( )
A . q , r B . 2 q , r C . 2 q , 2 r D . 4 q , 2 r
D
【详解】初始状态下,液滴处于静止状态时,满足
即
AB .当电势差调整为 2 U 时,若液滴的半径不变,则满足
可得
AB 错误;
CD .当电势差调整为 2 U 时,若液滴的半径变为 2 r 时,则满足
可得
C 错误, D 正确。
故选 D 。
带电粒子在电场中的直线运动:
(1)如不计重力,电场力就是粒子所受合外力,粒子做直线运动时的要求有:
①对电场的要求:或是匀强电场,或不是匀强电场但电场的电场线有直线形状。
②对初始位置的要求:在匀强电场中任一点开始运动都可以,在非匀强电场中带电粒子的初始位置必须在直线形的电场线上。
③对初速度的要求:初速度或为零,或不为零但与所在的电场线共线。
(2)粒子在电场中做直线运动的处理方法有两种:
①将牛顿第二定律与运动学公式结合求解,这种方法只能用在匀强电场中。不考虑重力时,常用的基本方程有:
等.
②由动能定理求解不涉及时间的问题,这种方法对匀强电场、非匀强电场均适用。不考虑重力时,基本方程为:
需要特别注意的是式中U是质点运动中所经历的始末位置之间的电势差,而不一定等于题目中给定的电压,如带电粒子从电压为U的两板中点运动到某一极板上时,经历的电压仅是
1、在匀强电场中的加速问题,一般属于物体受恒力(重力一般不计)作用运动问题。处理的方法有两种:
①根据牛顿第二定律和运动学公式结合求解:,,;
②根据动能定理与电场力做功,运动学公式结合求解:。
2、在非匀强电场中的加速问题,一般属于物体受变力作用运动问题。处理的方法只能根据动能定理与电场力做功,运动学公式结合求解:。
登录并加入会员可无限制查看知识点解析