如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)( )
A. B.
C.
D.
B
【分析】
根据动能定理得出物块到达最高点的速度,结合高度求出平抛运动的时间,从而得出水平位移的表达式,结合表达式,运用二次函数求极值的方法得出距离最大时对应的轨道半径.
【详解】
设半圆的半径为R,根据动能定理得:−mg•2R=mv′2−
mv2,离开最高点做平抛运动,有:2R=
gt2,x=v′t,联立解得:
,可知当R=
时,水平位移最大,故B正确,ACD错误.故选B.
【点睛】
本题考查了动能定理与圆周运动和平抛运动的综合运用,得出水平位移的表达式是解决本题的关键,本题对数学能力的要求较高,需加强这方面的训练.
动能:
登录并加入会员可无限制查看知识点解析
质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上。已知t=0时质点的速度为零。在图示t1、t2、t3和t4各时刻中,哪一时刻质点的动能最大?
A.t1 B.t2 C.t3 D.t4