下载试题
当前位置:
学科首页
>
必修2 第六章 圆周运动
>
向心力
>
试题详情
难度:
使用次数:178
更新时间:2020-12-03
纠错
1.

如图所示为一皮带传动装置,右轮半径为ra点在它的边缘上;左轮半径为2rb点在它的边缘上.若在传动过程中皮带不打滑,则a点与b点的向心加速度大小之比(

Aaa:ab=4:1    Baa:ab=1:4

Caa:ab=2:1    Daa:ab=1:2

查看答案
题型:选择题
知识点:向心力
下载试题
复制试题
【答案】

C

【解析】

试题分析:该图所示为皮带传送装置,所以Ab两点线速度相等,由向心加速度,可求出Ab两点向心加速度之比为2:1,C正确。

考点:皮带传动、向心加速度

=
考点梳理:
根据可圈可点权威老师分析,试题“ ”主要考查你对 向心力 等考点的理解。关于这些考点的“资料梳理”如下:
◎ 向心力的定义

向心力的定义:

在圆周运动中产生向心加速度的力。

◎ 向心力的知识扩展
1、向心力
总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小,大小,方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力。向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供。
2、轻绳模型
Ⅰ、轻绳模型的特点:
①轻绳的质量和重力不计;
②可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力;
③轻绳拉力的变化不需要时间,具有突变性。

Ⅱ、轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
①临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:

②小球能通过最高点的条件:(当时,绳子对球产生拉力)
③不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)
3、轻杆模型:
Ⅰ、轻杆模型的特点:
①轻杆的质量和重力不计;
②任意方向的形变不计,只能产生和承受各方向的拉力和压力;
③轻杆拉力和压力的变化不需要时间,具有突变性。

Ⅱ、轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
①小球能通过最高点的临界条件:(N为支持力)
②当时,有(N为支持力)
③当时,有(N=0)
④当时,有(N为拉力)
◎ 向心力的特性

向心力的特性:

1、向心力
总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小,大小,方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力。向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供。
2、轻绳模型
Ⅰ、轻绳模型的特点:
①轻绳的质量和重力不计;
②可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力;
③轻绳拉力的变化不需要时间,具有突变性。

Ⅱ、轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
①临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:

②小球能通过最高点的条件:(当时,绳子对球产生拉力)
③不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)
3、轻杆模型:
Ⅰ、轻杆模型的特点:
①轻杆的质量和重力不计;
②任意方向的形变不计,只能产生和承受各方向的拉力和压力;
③轻杆拉力和压力的变化不需要时间,具有突变性。

Ⅱ、轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
①小球能通过最高点的临界条件:(N为支持力)
②当时,有(N为支持力)
③当时,有(N=0)
④当时,有(N为拉力)

◎ 向心力的知识点拨

知识点拨:
向心力是从力的作用效果来命名的,因为它产生指向圆心的加速度,所以称它为向心力。它不是具有确定性质的某种类型的力。相反,任何性质的力都可以作为向心力。实际上它可是某种性质的一个力,或某个力的分力,还可以是几个不同性质的力沿着半径指向圆心的合外力。对一个物体进行受力分析的时候,是不需要画向心力的,向心力是效果力。

◎ 向心力的知识拓展
知识拓展:
对于向心力的理解,同学们可以切身的体会一下。两个同学手拉手,甲同学原地,乙同学绕着甲同学转,甲同学给乙同学的拉力就是向心力,当拉力大于向心力的时候,乙同学向心(甲同学)运动,当拉力小于向心力的时候,乙同学做离心运动。
◎ 向心力的教学目标
1、能结合实例分析,知道向心力是一种效果力以及方向。
2、能够用自己的语言归纳向心力公式的确切含义,并能用来进行简单的计算。
3、知道变速圆周运动中向心力是合外力的一个分力,能够描述合外力的作用效果。
◎ 向心力的考试要求
能力要求:应用
课时要求:30
考试频率:必考
分值比重:4

登录并加入会员可无限制查看知识点解析

类题推荐:
向心力
加入组卷
进入组卷
下载知识点
知识点:
版权提示

该作品由: 用户小小分享上传

可圈可点是一个信息分享及获取的平台。不确保部分用户上传资料的来源及知识产权归属。如您发现相关资料侵犯您的合法权益,请联系 可圈可点 ,我们核实后将及时进行处理。
终身vip限时199
全站组卷·刷题终身免费使用
立即抢购


0
使用
说明
群联盟
收藏
领福利