一闭合圆形线圈放在匀强磁场中,线圈的轴线与磁场方向成30°角,磁感应强度随时间均匀变化。在下列方法中能使线圈中感应电流增大一倍的是
A.把线圈匝数增大一倍 B.把线圈面积增大一倍
C.把线圈半径增大一倍 D.把线圈匝数减少到原来的一半
C
【详解】
A、设导线的电阻率为,横截面积为S,线圈的半径为r,则感应电流为:
可见,若将线圈直径增大一倍,则r增大一倍,I增大一倍,I与线圈匝数无关,故AD错误,C正确;
B、若将线圈的面积增加一倍,半径r增大为倍,则电流增加倍,故B错误。
法拉第电磁感应定律:
导体切割磁感线的两个特例:
的区别与联系及选用原则:
电磁感应中动力学问题的解法:
电磁感应和力学问题的综合,其联系的桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系。
1.分析思路
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
(2)求回路中的电流。
(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向)。
(4)列动力学方程或平衡方程求解。
2.常见的动态分析这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。同时也要抓好受力情况和运动情况的动态分析,研究顺序为:导体受力运动产生感应电动势一感应电流一通电导体受安培力一合外力变化一加速度变化一速度变化一周而复始地循环,循环结束时,加速度等于零.导体达到稳定运动状态。
电磁感应中的动力学临界问题:
(1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度求最大值或最小值的条件。
(2)基本思路:
登录并加入会员可无限制查看知识点解析