如图所示,一光滑半圆形轨道固定在水平地面上,圆心为O、半径为R,一根轻橡皮筋一端连在可视为质点的小球上。另一端连在距离O点正上方R处的P点。小球放在与O点等高的轨道上A点时,轻橡皮筋处于原长。现将小球从A点由静止释放,小球沿圆轨道向下运动,通过最低点B时对圆轨道的压力恰好为零。已知小球的质量为m,重力加速度为g,则小球从A点运动到B点的过程中下列说法正确的是( )
A.小球通过最低点时,橡皮筋的弹力等于mg
B.橡皮筋弹力做功的功率逐渐变大
C.小球运动过程中,橡皮筋弹力所做的功等于小球动能增加量
D.小球运动过程中,机械能的减少量等于橡皮筋弹性势能的增加量
D
【解析】
小球运动到最低点时,根据牛顿第二定律可得F-mg=m,橡皮筋的弹力F=mg+m,故F大于mg,故A错误;根据P=Fvcosα可知,开始时v=0,则橡皮筋弹力做功的功率P=0.在最低点速度方向与F方向垂直,α=90°,则橡皮筋弹力做功的功率P=0,故橡皮筋弹力做功的功率先变大后变小,故B错误;小球运动过程中,根据动能定理知,重力做功和橡皮筋弹力所做的功之和等于小球动能增加量,故C错误。小球和弹簧组成的系统机械能守恒,知小球运动过程中,机械能的减少量等于橡皮筋弹性势能的增加量,故D正确。
弯道的情况:
火车转弯情况:外轨略高于内轨,使得所受重力和支持力的合力提供向心力,以减少火车轮缘对外轨的压力。
①当火车行使速率v等于v规定时,F合=F向心,内、外轨道对轮缘都没有侧压力;
②当火车行使速率v大于v规定时,F合<F向心,外轨道对轮缘都有侧压力;
③当火车行使速率v小于v规定时,F合>F向心,内轨道对轮缘都有侧压力。
对弯道问题的处理方法:
①、确定物体运动平面,圆心,半径。
②、受力分析,确定向心力的大小。
③、由向心力得到其它的各个物理量。
登录并加入会员可无限制查看知识点解析