汽车拉着拖车在水平道路上沿直线加速行驶,根据牛顿运动定律可知
A、汽车拉拖车的力大于拖车拉汽车的力
B、汽车拉拖车的力等于拖车拉汽车的力
C、汽车拉拖车的力大于拖车受到的阻力
D、汽车拉拖车的力等于拖车受到的阻力
BC
二力平衡的关系是大小相等,方向相反,作用在同一直线上。两个力作用在同一物体上,无依赖关系,撤除一个,另一个力可依然存在,只是不再平衡。两个力作用效果可相互抵消,可叠加,可求合力且合力为零。两力的性质可相同,也可不同。
解决平衡问题的常用方法:
1.合成法与分解法这两种方法常用在物体在三个力作用下处于平衡状态的问题:
合成法:将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡问题转化为二力平衡问题。
分解法:当物体受到三个共点力的作用处于平衡状态时,利用平行四边形对任意一个力沿另外两个力的作用线方向分解,则这两个分力分别与另外两个力等大反向。
无论是利用合成法还是利用分解法,都需要在作出平行四边形后再利用图中几何关系来解三角形,从而求出力的大小或方向,常用到的数学知识有:
(1)三角函数定义当出现直角三角形时,可利用三角函数的定义来求解力的大小或方向:
(2)正弦定理对于任意三角形,都有对边与对角的正弦比值相等,如图:
(3)相似三角形当力的三角形与图中的几何三角形相似时,仍有对应边成比例的关系。如在图所示的装置中,各力之间满足下列关系:
(4)菱形的性质当有两个力大小相等时,求这两个力的合力或将第三个力分解,就会得到一个菱形。而菱形的对角线相互垂直平分,而且平分一组对角。如在处理涉及滑轮或光滑挂钩的平衡问题时,将滑轮或光滑挂钩两侧绳上的拉力合成,运算过程就相对简便。
(5)余弦定理有时还需用到余弦定理,如在图中,有
2.矢量三角形法物体在三个力作用下处于平衡状态时,这三个力必可构成一封闭三角形。通过受力分析,画出物体受力示意图,将力平移后组成三角形。然后直接利用上面所述的数学知识解三角形。
3.正交分解法当物体受到多个共点力的作用处于平衡状态时,可以利用正交分解法建立坐标系,则有=0。通常根据平衡条件,应用正交分解法解题,在解决多个力平衡的问题时尤为方便。但是使用时应注意根据具体情况选择合适的坐标系,一般应遵循的原则为:不在坐标轴上的力越少越好,各力与坐标轴之间的夹角是特殊角为好。
4.整体法和隔离法以上几种方法的着眼点是物体受力情况,而整体法和隔离法是针对研究对象而言的,是解决连接体问题时需考虑的方法。
(1)整体法:它是把两个或两个以上的物体组成的系统作为一个整体来研究的一种分析方法,当只研究系统而不涉及系统内部的相互作用时一般可采用整体法。
(2)隔离法:它是将研究对象从周围物体(连接体)中隔离出来进行分析的方法。一般在研究系统内物体间相互作用时采用隔离法。
动态平衡问题的解决方法:
动态问题包括动态平衡问题的分析和动态非平衡问题的分析。
所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态中。
解动态平衡问题通常有两种方法:
1.图解法
对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的三角形或平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。
图解法通常使用在三力作用下或可等效为三力作用下的动态平衡问题。
(1)三个力的方向都不变。如图所示,此种情况下任一力增大时,其余两力也增大,反之亦然。
(2)三个力中有一个力恒定,有一个力方向恒定。如图所示,此情况下可作出力的矢量三角形(或平行四边形),确定三角形中不变的边与方位不变的边,由线段长度及另一边的方位变化来确定力的大小、方向变化情况。
2.解析法
对物体进行受力分析后,利用平衡条件列出方程,解出所判断量的表达式,利用有关数学知识讨论表达式得出答案。从物体受力数量来说,解析法与图解法不同。解析法不仅可以用来解决三个力作用下的动态平衡问题,并且对多个力作用下的动态平衡问题用解析法更方便。从解析法需引入的变量来看,可以是某一角度(这通常需要在力的三角形巾有一个角是不变的),也可以是某一线段的长度(这种情况下通常题目中出现的几何三角形与力的三角形相似),这是在三力作用下物体处于动态平衡。若是多个力作用下的动态平衡,通常以某一角度为变量,利用正交分解来获得平衡方程,进而得到要分析的物理量的表达式。
3.动态平衡中的滑轮模型对于轻质光滑动滑轮及与之作用相当的光滑挂钩、光滑环等,具有如下特征:
(1)两侧绳中张力相同;
(2)两侧绳与竖直方向夹角相等;
(3)绳与竖直方向的夹角θ取决于绳的总长度l及两悬点问水平距离
登录并加入会员可无限制查看知识点解析