两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。
解:设两星质量分别为,都绕连线上O点作周期为T的圆周运动,星球1和星球2到O的距离分别为.由万有引力定律和牛顿第二定律及几何条件可得
①
②
联立解得:
计算天体质量与密度:
1、用万有引力定律求天体的质量:通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。
2、用万有引力定律计算天体的平均密度:通过观测天体表面运动卫星的周期T,就可以求出天体的密度ρ。
计算天体质量与密度:
1、用万有引力定律求天体的质量:通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。以地球的质量的计算为例
①若已知月球绕地球做匀速圆周运动的周期T和半径r,根据:
,得:;
②若已知月球绕地球做匀速圆周运动的线速度v和半径r,根据:
,得:;
③若已知月球绕地球做匀速圆周运动的线速度v和周期T,根据:
和,得:;
④若已知地球的半径R和地球表面的重力加速度g,根据:
,得:——此式通常被称为黄金代换式。
2、用万有引力定律计算天体的平均密度:通过观测天体表面运动卫星的周期T,就可以求出天体的密度ρ。
天体球体积:V=;天体密度:(由,,,r指球体半径,R指轨道半径,当R=r时,)。
登录并加入会员可无限制查看知识点解析