如图所示,光滑斜面的底端a与一块质量均匀、水平放置的平极光滑相接,平板长为2L,L=1m,其中心C固定在高为R的竖直支架上,R=1m,支架的下端与垂直于纸面的固定转轴O连接,因此平板可绕转轴O沿顺时针方向翻转.问:
(l)在外面上离平板高度为h0处放置一滑块A,使其由静止滑下,滑块与平板间的动摩擦因数μ=0.2,为使平板不翻转,h0最大为多少?
(2)如果斜面上的滑块离平板的高度为h1=0.45 m,并在h1处先后由静止释放两块质量相同的滑块A、B,时间间隔为Δt=0.2s,则B滑块滑上平板后多少时间,平板恰好翻转。(重力加速度g取10 m/s2)
解:(1)设A滑到a处的速度为v0= ①
f=uN,N=mg,f=ma, a=ug
滑到板上离a点的最大距离为v02=2ugs0,
s0=2gh0/2ug=h0/u ③
A在板上不翻转应满足条件:摩擦力矩小于正压力力矩,即M摩擦≤M压力
umgR≤mg(L-s0) ④
h0≤u(L-Ur)=0.2(1-0.2)=0.16 m ⑤
(2)当h=0.45m,vA===3m/s
vA=vB=3m/s ⑥
设B在平板上运动直到平板翻转的时刻为t,取Δt=0.2s
sA=vA(t+Δt)-ug(t+Δt)2/2 ⑦’
sB=vBt-ugt2/2 ⑦
两物体在平板上恰好保持平板不翻转的条件是
2umgR=mg(L-sA)+mg(L-sB) ⑧
由⑦+⑦’式等于⑧式,得t=0.2s
判定机械能守恒的方法:
(1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。
竖直平面内圆周运动与机械能守恒问题的解法:
在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。
登录并加入会员可无限制查看知识点解析